Zoom Out and Observe: News Environment Perception for Fake News Detection

ADVISOR: Jia-Ling Koh PRESENTER: Xiao-Yuan Hung SOURCE: ACL' 22 DATE: 2023/01/31

Outline

- Problem
- Solution
- Example
- Observation

Problem

• Existing method usually rely on

- Post content
 - Pros
 - Detect immediately
 - Cons
 - Single source
- Related post-level signals
 - Pros
 - Explainable
 - Cons
 - Social Context
 - Need sufficient social context

(a) Post-

only

(Existing)

- Knowledge
 - Emergency is difficult to check

Solution

• Observe the external news environment where a fake news post is created and disseminated

Example

Observation

Popularity(Macro)

• Popular event might spread widely

• Novelty(Micro)

• Catch the audience's attention

Introduction

Method

Experiment

- Architecture
- (a)Constuction
- (b)Perception
- (c)Prediction

News Environment Perception(NEP)

- Goal
 - Empower fake news detectors with the effective perception of news environments

Architecture

(a)Constuction

(a) Construction

3

 \circ \quad Set of all collected news items published earlier than p

MarcoEnv

$$\mathcal{E}^{mac} = \{ e : e \in \mathcal{E}, 0 < t_p - t_e \le T \}$$

MircoEnv

 $\mathcal{E}^{mic} = \{e : e \in \operatorname{Topk}(p, \mathcal{E}^{mac})\}$

 $k = \lceil r | \mathcal{E}^{mac} | \rceil$ and $r \in (0, 1)$

- $\mathrm{T}:$ days, hyperparameter
- $t_{\rm p}$: publication date of p
- t_{e}^{i} : publication date of news item e
- r : proportion, hyperparameter

(b)Perception

Popularity-Oriented MACROENV Perception

Cosine Similarity

• If many items in the MACROENV are similar to p, then p might be also popular in such an environment.

$$s(\mathbf{p}, \mathbf{e}_i) = \frac{\mathbf{p} \cdot \mathbf{e}_i}{\|\mathbf{p}\| \|\mathbf{e}_i\|}$$

Popularity-Oriented MACROENV Perception

Gaussian Kernel Pooling

• Transform environment perceived vector into fixed-dimensional vectors

use C kernels
$$\{\mathbf{K}_i\}_{i=1}^C$$

 $\mathbf{K}_k^i = \exp\left(-\frac{(s(\mathbf{p}, \mathbf{e}_i) - \mu_k)^2}{2\sigma_k^2}\right),$ (5)
 $\mathbf{K}_k(\mathbf{p}, \mathcal{E}^{mac}) = \sum_{i=1}^{|\mathcal{E}^{mac}|} \mathbf{K}_k^i,$ (6)

Scatter in [-1, 1] completely and evenly cover the range of cosine similarity

Different Kernels Example

Popularity-Oriented MACROENV Perception

Gaussian Kernel Pooling

• Transform environment perceived vector into fixed-dimensional vectors

use C kernels $\{\mathbf{K}_i\}_{i=1}^C$

$$\mathbf{K}_{k}^{i} = \exp\left(-\frac{(s(\mathbf{p}, \mathbf{e}_{i}) - \mu_{k})^{2}}{2\sigma_{k}^{2}}\right), \qquad (5)$$

$$\mathbf{K}_{k}(\mathbf{p}, \mathcal{E}^{mac}) = \sum_{i=1}^{|\mathcal{E}^{mac}|} \mathbf{K}_{k}^{i}, \qquad (6)$$

$$\mathbf{K}(\mathbf{p}, \mathcal{E}^{mac}) = \operatorname{Norm}\left(\bigoplus_{k=1}^{C} \mathbf{K}_{k}(\mathbf{p}, \mathcal{E}^{mac})\right), \quad (7)$$

Popularity-Oriented MACROENV Perception

- MACROENV-perceived vector v^{p,mac}
 - $m(\mathbf{E}^{mac})$
 - center vector of the MACROENV
 - averaging all vectors

$$\mathbf{v}^{p,mac} = \mathrm{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mac}) \oplus \mathbf{K}(\mathbf{p}, \mathcal{E}^{mac})).$$

- If the content of a post is novel, it is expected to be an outlier in such an event
- use Eqs. (5) to (7) again for K(·,·)
- $m(E^{mic})/Avg(E^{mic})$
 - center vector of MICROENV

 $\mathbf{u}^{sem} = \mathrm{MLP}(\mathbf{p} \oplus \mathbf{m}(\mathcal{E}^{mic}))$

1

$$\mathbf{u}^{sim} = \mathrm{MLP}(\mathbf{g}(\mathbf{K}(\mathbf{p}, \mathcal{E}^{mic}), \mathbf{K}(\mathbf{m}(\mathcal{E}^{mic}), \mathcal{E}^{mic})))$$

where $g(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \odot \mathbf{y}) \oplus (\mathbf{x} - \mathbf{y})$

$$\mathbf{v}^{p,mic} = \mathrm{MLP}(\mathbf{u}^{sem} \oplus \mathbf{u}^{sim})$$

(c)Prediction

• Fusion Gate

• For a good compatibility with various fake news detectors

$$\mathbf{v}^p = \mathbf{g} \odot \mathbf{v}^{p,mac} + (\mathbf{1} - \mathbf{g}) \odot \mathbf{v}^{p,mic},$$

$$\mathbf{g} = \text{sigmoid} (\text{Linear} (\mathbf{o} \oplus \mathbf{v}^{p,mac}))$$

o : the last-layer feature from a Fake News detector

$$\hat{\mathbf{y}} = \operatorname{softmax}(\operatorname{MLP}(\mathbf{o} \oplus \mathbf{v}^p)).$$

LOSS : cross-entropy loss

28

Introduction

Method

Experiment

Conclusion

- Dataset
- Performance
- Ablation
- Categorization of macro- and micro-preferred samples
- Case Study
- Case Weakly Related to News Env.

Dataset

Table 1: Statistics of the datasets.

Deterrit		Chinese	•	English				
Dataset	Train Val Test		Test	Train	Val	Test		
#Real	8,787	5,131	5,625	1,976	656	661		
#Fake	8,992	4,923	5,608	1,924	638	628		
Total	17,779	10,054	11,233	3,900	1,294	1,289		
#News Items		583,208		1,003,646				
$\frac{\text{Min/Avg/Max of}}{ \mathcal{E}^{mac} \text{ in 3 days}}$	41 /	41 / 505 / 1,563			308 / 1,614 / 2,211			

• Chinese(2010-2021)

- Post
 - Merged the non-overlapping parts of 4 <u>Weibo</u> datasets
- News Env.
 - Collected from the official accounts of six representative mainstream news outlets

• English(2014-2018)

- Post
 - Merged the non-overlapping parts of 3 English datasets
- News Env.
 - use news headlines (plus short descriptions if any) from Huffington Post, NPR, and Daily Mail

Performance

Model		Chinese				English			
		Acc.	macF1	$F1_{\rm fake}$	$F1_{real}$	Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$
	Bi-LSTM	0.727	0.713	0.652	0.775	0.705	0.704	0.689	0.719
	+NEP	0.776	0.771	0.739	0.803	0.718	0.718	0.720	0.716
	EANN _T	0.732	0.718	0.657	0.780	0.700	0.699	0.683	0.714
Dest Only	+NEP	0.776	0.770	0.733	0.807	0.722	0.722	0.722	0.722
Post-Only	BERT	0.792	0.785	0.744	0.825	0.709	0.709	0.701	0.716
	+NEP	0.810	0.805	0.772	0.837	0.718	0.718	0.720	0.715
	BERT-Emo	0.812	0.807	0.776	0.838	0.718	0.718	0.719	0.718
	+NEP	0.831	0.829	0.808	0.850	0.728	0.728	0.728	0.728
	DeClarE	0.764	0.758	0.720	0.795	0.714	0.714	0.709	0.718
"Zoom-In"	+NEP	0.800	0.797	0.773	0.822	0.717	0.716	0.718	0.714
	MAC	0.755	0.751	0.717	0.784	0.706	0.705	0.708	0.701
	+NEP	0.764	0.760	0.732	0.789	0.716	0.716	0.716	0.716

EANN(Event Adversarial Neural Networks)

Identify whether a specific post is fake news or not

BERT-Emo

DeClarE(Debunking Claims with Interpretable Evidence)

MAC (Multihead Attentive Network for Fact-Checking)

Performance

Model		Chinese				English			
		Acc.	macF1	$F1_{\rm fake}$	$F1_{real}$	Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$
	Bi-LSTM	0.727	0.713	0.652	0.775	0.705	0.704	0.689	0.719
	+NEP	0.776	0.771	0.739	0.803	0.718	0.718	0.720	0.716
	EANNT	0.732	0.718	0.657	0.780	0.700	0.699	0.683	0.714
Doct Only	+NEP	0.776	0.770	0.733	0.807	0.722	0.722	0.722	0.722
Post-Only	BERT	0.792	0.785	0.744	0.825	0.709	0.709	0.701	0.716
	+NEP	0.810	0.805	0.772	0.837	0.718	0.718	0.720	0.715
	BERT-Emo	0.812	0.807	0.776	0.838	0.718	0.718	0.719	0.718
	+NEP	0.831	0.829	0.808	0.850	0.728	0.728	0.728	0.728
	DeClarE	0.764	0.758	0.720	0.795	0.714	0.714	0.709	0.718
"Zoom In"	+NEP	0.800	0.797	0.773	0.822	0.717	0.716	0.718	0.714
20011-111	MAC	0.755	0.751	0.717	0.784	0.706	0.705	0.708	0.701
	+NEP	0.764	0.760	0.732	0.789	0.716	0.716	0.716	0.716

Ablation Study(w/o Fake News Detector)

Madal	Chinese				English			
widdei	Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$	Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$
MACROENV	0.689	0.659	0.557	0.761	0.693	0.693	0.696	0.689
MICROENV	0.666	0.626	0.503	0.748	0.695	0.695	0.694	0.696
MACROENV+MICROENV	0.694	0.666	0.569	0.763	0.696	0.696	0.694	0.697

Ablation Study(w/o Env. Perception Modules)

Model			Chinese				English			
		Acc.	macF1	$F1_{\rm fake}$	$F1_{\rm real}$	Acc.	macF1	$F1_{\rm fake}$	F1 _{real}	
BI	ERT-Emo + NEP	0.831	0.829	0.808	0.850	0.728	0.728	0.728	0.728	
	w/o MACROENV	0.822	0.819	0.794	0.843	0.726	0.726	0.726	0.725	
	w/o MICROENV	0.824	0.820	0.795	0.845	0.723	0.723	0.715	0.731	
De	eClarE + NEP	0.797	0.800	0.773	0.822	0.717	0.716	0.718	0.714	
	w/o MACROENV	0.776	0.771	0.735	0.806	0.712	0.711	0.709	0.713	
	w/o MICROENV	0.778	0.773	0.736	0.809	0.709	0.709	0.719	0.698	

Categorization of macro- and micro-preferred samples

• Selected the top 1% of Chinese fake news samples

Figure 5: Categories of MACROENV- and MICROENVpreferred samples.

Case Study

(a) N	lacro < Micro	(b) M	acro > Micro	(c) Macro ≈ Micro			
officially release of phone Mate X will (2019/5/26)	larmony operation system will n June 24! Huawei's foldable be equipped with this system.	Fost Please Re found! Bai Yaqian. middle school. Tick delay her Gaokao*	post! A lost <u>admit card</u> is Exam room 013 at the first ket No. 20411311. Do not !! (2020/7/7)	Japanese outbreaking pand waiting at the Har	ries coronavirus among 206 m <u>Wuhan</u> due to the emic. 206 ambulances neda airport! (2020/1/29)		
Huawei is moderately popular.	Official release is novel among the events about Huawei.	Gaokao is the most popular.	Admit card is moderately novel among the events about Gaokao.	Wuhan pandem is overwhelmin popular.	<i>Japan's ambulances</i> is novel among the related events.		
MACROENV	MICROENV	MACROENV	MICROENV	MACROENV	MICROENV		
Keywords:	Rel. Events about Huawei:	Keywords:	Rel. Events about Gaokao:	Keywords:	Rel. Events about Pandemic:		
China	Huawei registers the	Gaokao (Rank 1)	Reminder to examinees:	pandemic (Rank 1)	 Japan will treat infected 		
Nanyang, Henan	trademark Harmony	pandemic	Bring your admit card and	case	individuals using public		
water-hydrogen	Huawei helps UK open its	case	ID card	pneumonia	expense		
USA	first 5G service	COVID-19	A mother mistakenly	Wuhan (Rank 4)	• The fourth <i>case found</i> in		
vehicle	Panasonic denies severing	Beijing	discards three children's	mask	Japan		
engine	ties with Huawei	USA	admit cards	Hubei	• 1M masks for pandemic		
	Serbia keeps cooperation	Hong Kong	Gaokao question leakage	i China	donated by Japanese		
Huawei (Rank 11)	with Huawei		is just the fraud	1	people reached Chengdu		

*Gaokao: National College Entrance Examination in China.

intuitively show how NEP handles different scenarios

Case Weakly Related to News Env.

Post This painting was created by Yamamoto, a Japanese professor of neurology . If it doesn't move, you are healthy and sleep well; if it moves slowly, you are a little stressed and tired; if it moves quickly, you feel stressed out and may have mental illness! [Image] (2019/3/9)

No keywords matching with the post.

MACROENV

New Zealand

development

Li Keqiang

children

Chengdu

school

...

male

Keywords: China No topic-similar items are found.

MICROENV

Top similar events:

- Li Keqiang: The Chinese government does not ask companies for surveillance.
- A man performing calligraphy with this head in Chongqing...
- A man in Guangdong beats nurse to concussion for waiting too long...

Introduction

Method

Experiment

Conclusion

Conclusion

- It designed popularity- and novelty-oriented perception modules to assist fake news detectors
- Pros
 - Timeliness
 - Only requires the post and mainstream news published a few days before.
 - Compatibility
 - Can be integrated with existing methods
 - Data Accessibility
 - The data to construct news environments is easy to access

• Cons

Works ineffective if involved with a long-lasting discussed topic(e.g.mental health)